中國計(jì)量網(wǎng) http://m.etvsebi.cn/
中國計(jì)量網(wǎng)——計(jì)量行業(yè)門戶網(wǎng)站
計(jì)量資訊速遞
您當(dāng)前的位置: 首頁 > 學(xué)苑 > 不確定度

術(shù)語“不確定度”定義的剖析

發(fā)布時(shí)間:2010-07-26 作者:王春艷 陸梅 高蔚 錢鐘泰 來源:本站原創(chuàng) 瀏覽:8424

中國計(jì)量科學(xué)研究院 王春艷  陸梅  高蔚  錢鐘泰

    一、引言

    在我國JJF1059-1999規(guī)范《測量不確定度評(píng)定和表示》(以下簡稱“JJF1059-1999規(guī)范”)和國際規(guī)范《測量不確定度表示指南》ISO1995(E)(以下簡稱“GUM95”)中,術(shù)語“測量不確定度”無疑是最重要的概念。JJF1059-1999規(guī)范給出“測量不確定度”定義中引用GUM95定義的部分如下:
    【2.11[測量]不確定度
    表征合理地賦予被測量之值的分散性,與測量結(jié)果相關(guān)系的參數(shù)。
    注:
    1.此參數(shù)可以是諸如標(biāo)準(zhǔn)差或其倍數(shù),或說明了置信水準(zhǔn)的區(qū)間的半寬度。
    2.測量不確定度由多個(gè)分量組成。其中一些分量可以用測量列結(jié)果統(tǒng)計(jì)分布估計(jì),并用實(shí)驗(yàn)標(biāo)準(zhǔn)差表征。另一些分量則可用基于經(jīng)驗(yàn)或其他信息的假定概率分布估算,也可用標(biāo)準(zhǔn)差表示。
    3.測量結(jié)果應(yīng)該理解為被測量之值的最佳估計(jì),全部不確定分量均貢獻(xiàn)給了分散性,包括那些由系統(tǒng)效應(yīng)引起的(如,與修正值,參考計(jì)量標(biāo)準(zhǔn)有關(guān)的)分量。】
    JJF1059-1999規(guī)范編者根據(jù)自己對(duì)GUM95有關(guān)內(nèi)容的理解為定義加上4、5、6、7四條“注”,在此從略。
    GUM95定義的用詞過于晦澀,使人難以理解。例如什么是“被測量之值的分散性”?什么是“被測量之值的最佳估計(jì)”?“被測量之值的分散性”作為一種客觀存在,如何才能“賦予”?怎么樣才是“合理地”?……。因此,對(duì)術(shù)語“測量不確定度”的含義即使在GUM95或JJF1059-1999規(guī)范編者間也是各有各的理解。
    量值的分散性是統(tǒng)計(jì)學(xué)中隨機(jī)變量的特性。為使大家對(duì)術(shù)語“測量不確定度”有明確和唯一的理解,有必要用統(tǒng)計(jì)學(xué)術(shù)語明確“測量不確定度”及有關(guān)術(shù)語含義中的量值關(guān)系。這就是本文的主要內(nèi)容。
    

二、有關(guān)的基本概念

    1.隨機(jī)變量及其統(tǒng)計(jì)特征值
    如果變量X的量值隨觀察而變,則稱變量X為隨機(jī)變量。隨機(jī)變量X的全部統(tǒng)計(jì)學(xué)特性由其[概率]分布函數(shù)Fx(x)或[概率]密度函數(shù)px(x)表示,其定義分別如式(1)和式(2)所示:
    Fx(x)=P(X≤x)  (1)
    px(x)=dFx(x)〕/dx  (2)
    式(1)中,P(X≤x)表示出現(xiàn)事件X≤x的概率值。
    由于函數(shù)Fx(x)或px(x)是自變量X在無窮區(qū)間內(nèi)的函數(shù),在一系列場合下不便于應(yīng)用,例如不便于比較隨機(jī)變量的大小。經(jīng)常采用有確定量值的參數(shù)表征隨機(jī)變量X的某種統(tǒng)計(jì)學(xué)特性,本文稱這些參數(shù)為變量X的統(tǒng)計(jì)參數(shù)。變量X最重要的統(tǒng)計(jì)參數(shù)是它的任意函數(shù)f(X)的期望Ef(X)〕,其定義為:
    
    如果對(duì)函數(shù)f(X)作多次抽樣,將其第i次抽樣值表示為f(Xi),可以證明式(4):
    
    式(4)表明,期望是抽樣次數(shù)無限增大時(shí)抽樣值平均值的極限。
    變量X期望表征著隨機(jī)變量的穩(wěn)定部分的大小,變量X扣除其期望E(X)后的殘留部分被稱為其中心化變量,用X表示。即有:
    X=X-E(X)  (5)
    中心化變量X是變量X的分散部分,任何中心化變量的期望都將為零,它的大小表征著變量X的分散性,可以由變量X的標(biāo)準(zhǔn)差σ(X)來表征。標(biāo)準(zhǔn)差σ(X)是變量X方差V(X)的正平方根。即有:
    σ(X)=〔V(X)〕1/2  (6)
    方差V(X)是變量X的二階中心矩。稱變量X對(duì)確定量值a之差n次方的期望為變量X對(duì)值an階矩,用μna(X)表示,即有:
    μna(X)=E〔(X-a)n〕(7)
    當(dāng)a=0時(shí),相應(yīng)矩被稱為原點(diǎn)矩,變量Xn階原點(diǎn)矩μn0(X)為:
    μn0(X)=E(Xn)  (8)
    當(dāng)a=E(X)時(shí),相應(yīng)矩被稱為中心矩,變量Xn階中心矩簡化表示為μnxμn(X),它同時(shí)是中心化變量Xn階原點(diǎn)矩,即有:
    μnx=μn(X)=E{〔X-E(X)〕n}=E(Xn)(9)
    由此變量X的方差V(X)可以用式(10)表示:
    V(X)=μ2x=E{〔X-E(X)〕2}=E(X2)  (10)
    本文將稱表征變量大小,與變量同量綱的統(tǒng)計(jì)參數(shù)為變量的統(tǒng)計(jì)特征值。期望E(X)與標(biāo)準(zhǔn)差σ(X)是變量X的兩個(gè)重要的統(tǒng)計(jì)特征值,它們分別表征著變量X穩(wěn)定部分及分散部分的大小。為表征整個(gè)變量X的大小,可以采用變量X的有效值(或均方根值)σ0(X)作為其統(tǒng)計(jì)特征值,其定義如下:
    σ0(X)=〔μ2x(0)〕1/2=〔E(X2)〕1/2  (11)
    按所述的各種定義,再令:
    X==E(X)  (12)
    不難證實(shí)下列等式:
    
    σ0(X~)=σ(X)  (15)
    σ0(X)=〔E(X)2+σ(X)21/2=〔σ0(X=)2+σ0(X)21/2  (16)
    上述公式表明,變量的期望E(X)和中心化變量X可以看作相互獨(dú)立的兩部分,其大小分別由期望E(X)與標(biāo)準(zhǔn)差σ(X)表征,它們的有效值之間的綜合服從方和根(平方和的平方根)法。
    2.客觀存在的量值和它的人為估計(jì)值
    任何客觀存在的“量值”完全獨(dú)立于人類對(duì)它的認(rèn)識(shí)之外,人們可以用各種方法評(píng)估它們,得出它們的各種評(píng)估值。所有評(píng)估值都不會(huì)完全準(zhǔn)確地等于客觀存在的“量值”,但所有評(píng)估值都將努力趨近于客觀存在的“量值”。因此,在實(shí)踐中所有客觀存在的“量值”都是不能完全準(zhǔn)確地確定的,但它同時(shí)又是所有評(píng)估值趨近的目標(biāo),在實(shí)踐中能以需要的準(zhǔn)確度逼近它??茖W(xué)研究的對(duì)象是“客觀量值”間的關(guān)系,這樣的關(guān)系當(dāng)然也是無法完全準(zhǔn)確地確定的;科學(xué)定理是上述規(guī)律的有限地近似描述。在應(yīng)用科學(xué)定理時(shí),代入其數(shù)學(xué)表示式的所有量值和得出的結(jié)果都將是“客觀量值”的人為估計(jì)值;但上述事實(shí)并不能否定“科學(xué)研究的對(duì)象是‘客觀量值’間的關(guān)系”這樣的根本事實(shí)。忘記這一根本事實(shí)將使科學(xué)發(fā)展失去目標(biāo),并在研究中引入一系列概念混亂。上述情況已由科學(xué)發(fā)展所證實(shí),同樣適用于“測量”。
    在很多情況下,沒有必要明確區(qū)分客觀存在的“量值”和其人為的評(píng)估值。當(dāng)研究“量值”間的關(guān)系時(shí),自然是針對(duì)客觀“量值”進(jìn)行的;在進(jìn)行實(shí)際數(shù)值運(yùn)算時(shí),采用的必然是這些量值大小的評(píng)估值??陀^“量值”與其人為的評(píng)估值各有其適用范圍,是相互補(bǔ)充的。
    本文采用符號(hào)XΛ表示變量X的估計(jì)值,即用上標(biāo)符號(hào)“Λ”表示取左側(cè)量值的估計(jì)值。
    變量X的估計(jì)值XΛ對(duì)變量X的差值ΔXΛ被稱為估計(jì)值XΛ的估計(jì)誤差。即有:
    ΔXΛ=XΛ-X  (17)
    估計(jì)誤差ΔXΛ的大小表示估計(jì)值XΛ對(duì)變量X的客觀量值的逼近程度,這個(gè)逼近程度被稱為估計(jì)值XΛ的準(zhǔn)確度。
    在式(18)成立時(shí),統(tǒng)計(jì)學(xué)中稱估計(jì)值XΛ為變量X的無偏估計(jì):
    E(ΔXΛ)=E(XΛ)-E(X)=0  (18)
    在無偏估計(jì)的情況下,估計(jì)誤差ΔXΛ是中心化變量。即有:
    ΔXΛ=(ΔXΛ)  (19)
    現(xiàn)在用本節(jié)的概念表述GUM95“不確定度”定義所用到的詞匯的涵義:
    在“國際通用計(jì)量學(xué)基本術(shù)語”(第二版)(以下簡稱“VIM93”)中,多處用到了“賦予(某客觀量)之值”的內(nèi)容,按本節(jié)所述的概念更合適的表述是“為(某客觀量)確定的估計(jì)值”。因?yàn)榭陀^量值是客觀存在,是無法人為“賦予”的。例如“VIM93”給出的“測量結(jié)果”的定義是“由測量所得到的賦予被測量之值”,應(yīng)該改為“由測量所得到的被測量的估計(jì)值”。
    用統(tǒng)計(jì)學(xué)術(shù)語正確解讀“被測量之值的最佳估計(jì)”,應(yīng)該是“被測量值的無偏估計(jì)”。
    注意由客觀量值為變量的函數(shù)也是一種客觀量值,同樣是僅能以需要的有限準(zhǔn)確度確定它們的估計(jì)值。這樣客觀量值的實(shí)例有隨機(jī)變量的總體統(tǒng)計(jì)參數(shù),如期望、方差、標(biāo)準(zhǔn)差和峰度等。
    3.量值的極值控制和極限值
    實(shí)踐中使用的對(duì)變量X量值控制基本上是控制其范圍,即使變量X量值符合下列不等式:
    Ul(X)≤XUh(X)  (20)
    這里Ul(X)是變量X的下限值,Uh(X)是變量X的上限值。
    式(20)的可靠性是如下保證的:檢測變量X量值總體的所有子樣,保留符合式(20)的所有子樣(稱之為合格值),刪除不符合式(20)的所有子樣(稱之為異常值或超差值),由合格值組成的變量X量值新總體將可靠地符合不等式(20)。這樣的變量X量值子樣的選擇過程被稱為合格評(píng)定或檢驗(yàn)。受合格評(píng)定或檢驗(yàn)控制的變量X量值有著嚴(yán)格的式(20)的極限范圍。檢驗(yàn)合格的變量X量在式(20)以外范圍的概率分布因被刪除而為零,這樣的概率分布形象化地稱之為“截尾”。所有“截尾”概率分布的“峰度”值都是負(fù)的。檢驗(yàn)合格變量X量值在式(20)以內(nèi)范圍的概率分布沒有受到控制,因此是隨機(jī)的。理論上是不重復(fù)的,任何分布都是可能的。
    合格評(píng)定或檢驗(yàn)是控制變量極限范圍,對(duì)極限范圍內(nèi)變量概率分布未加控制。本文稱這樣的控制為“極值控制”。
    針對(duì)“極值控制”的實(shí)際情況,建議對(duì)隨機(jī)變量的“極限值”采用下列定義:
    【極限值limit[value]
    當(dāng)隨機(jī)變量X足夠可靠地滿足下列不等式:
    X│≤U0(X)  (21)
    則稱U0(X)為變量X極限值
    注:
    (1)隨機(jī)變量X′的極限范圍的一般表示形式為:
    Ul(X′)≤X′≤Uh(X′)  (22)
    稱Ul(X′)為X′的下限,Uh(X′)為X′的上限。
    定義中將上、下限對(duì)稱的情況作為標(biāo)準(zhǔn)狀態(tài),即有:
    -Ul(X)=Uh(X)=U0(X)  (23)
    如果將變量X′經(jīng)下列變換成變量X:
    X=X′+〔Ul(X)+Uh(X)〕/2  (24)
    則X具有對(duì)稱上、下限U0(X)為:
    U0(X)=〔Uh(X′)-Ul(X′)〕/2  (25)
    (2)當(dāng)隨機(jī)變量X分布為無限時(shí),對(duì)有限的極限值U0(X)必然存在下列情況:
    │X│>U0(X)  (26)
    這種情況叫“異常”或“超差”。存在“異常”情況還能認(rèn)為極限值U0(X)足夠可靠,必須滿足下列兩條件之一:
    ①“異常”概率足夠地小,出現(xiàn)“異常”情況的可能極微。
    ②“異常”相對(duì)值η(X)={〔X/U0(X)〕-1}足夠地小,使得“異常”值X和極限值U0(X)實(shí)際上沒有區(qū)別。
    (3)為定量地表示“異常”對(duì)極限值U0(X)可靠性的影響,可以采用不同的“可靠性指標(biāo)”,如極值因子、置信水平等。
    (4)極限值U0(X)的可靠性經(jīng)常用檢驗(yàn)等技術(shù)措施刪除“異常”情況予以保證。如檢驗(yàn)加工公差刪除不合格加工件等。
    (5)隨機(jī)變量X的中心化變量X的極限值U0(X)被稱為隨機(jī)變量X的“中心化極限值”,并用U(X)表示之。
    表示符號(hào):
    隨機(jī)變量X的“極限值”用U0(X)表示。
    隨機(jī)變量X的中心化極限值用U(X)表示?!?br />     上述的極限值定義全面地符合了檢驗(yàn)(合格評(píng)定)實(shí)踐的實(shí)際情況,擺脫了對(duì)特定“可靠性指標(biāo)”的規(guī)定;同時(shí)涵蓋了經(jīng)典統(tǒng)計(jì)學(xué)中的“置信限”,它是按特定的“可靠性指標(biāo)”:“顯著性水平”α0X或“置信水平”(1-α0X)的給定值確定的。
    由于合格評(píng)定或檢驗(yàn)在量值控制中的廣泛應(yīng)用,“中心化極限值”和“極限值”成為隨機(jī)變量最重要的統(tǒng)計(jì)特征值。
    4.量值評(píng)估中分別估計(jì)的隨機(jī)變量X三個(gè)相互獨(dú)立的部分
    在傳統(tǒng)統(tǒng)計(jì)學(xué)中將隨機(jī)變量X分成其期望值E(X)和中心化變量X兩部分。中心化變量X的定義如下:
    X=X-E(X)  (27)
    上文已指出,變量X的總體統(tǒng)計(jì)特征值E(X)或σ(X)都是無法完全準(zhǔn)確確定的。對(duì)隨機(jī)變量X量值評(píng)估的結(jié)果將是統(tǒng)計(jì)特征估計(jì)值EΛ(X)或σΛ(X)。
    評(píng)估所得的變量期望估計(jì)值EΛ(X)不會(huì)準(zhǔn)確等于變量期望值E(X),稱它們之間的差值為期望估計(jì)誤差,用ΔEΛ(X)表示。即有:
    ΔEΛ(X)=EΛ(X)-E(X)  (28)
    根據(jù)中心化變量X和期望估計(jì)誤差ΔEΛ(X)的定義將有下列隨機(jī)變量X的分解式:
    X=E(X)+X=EΛ(X)-ΔEΛ(X)+X  (29)
    由式(27)在評(píng)估中期望值E(X)和中心化變量X=X-E(X)兩部分可以認(rèn)為是相互獨(dú)立的。存在期望估計(jì)誤差ΔEΛ(X)表明確定期望估計(jì)值EΛ(X)的估計(jì)方法是不完善的。實(shí)踐中引起期望估計(jì)誤差ΔEΛ(X)的原因主要有兩個(gè):
    (1)變量X的抽樣值X的誤差存在不為零的期望值,其主要的組成是“量值溯源”誤差;
    (2)變量X的隨機(jī)性對(duì)確定有限樣本量期望估計(jì)值EΛ(X)的影響。
    期望估計(jì)誤差ΔEΛ(X)在理論上具有確定的量值,但是無法確定。對(duì)期望值ΔEΛ(X)的評(píng)估通常將它看作可能出現(xiàn)值的一個(gè)抽樣值,用它的可能出現(xiàn)值的統(tǒng)計(jì)特征估計(jì)值表征其大小,這樣的統(tǒng)計(jì)特征估計(jì)值有期望估計(jì)誤差可能出現(xiàn)值ΔEΛ(X)的期望估計(jì)值EΛΔEΛ(X)〕,標(biāo)準(zhǔn)差估計(jì)值σΛΔEΛ(X)〕或中心化極限估計(jì)值UΛΔEΛ(X)〕。在EΛΔEΛ(X)〕和σ0ΛΔEΛ(X)〕或U0ΛΔEΛ(X)〕符號(hào)中的變量ΔEΛ(X)已經(jīng)不同于它在式(28)和(29)中確定量值的概念,已經(jīng)是它的可能出現(xiàn)值的概念,它將由期望估計(jì)值EΛ(X)的評(píng)估方法決定而基本獨(dú)立于評(píng)估結(jié)果EΛ(X)。
    這樣,在量值評(píng)估中隨機(jī)變量X被分為三部分,分別獨(dú)立地進(jìn)行評(píng)估,首先是量X的期望值E(X)作無偏估計(jì)EΛ(X),其結(jié)果的數(shù)值和正負(fù)號(hào)是完全確定的;是評(píng)估所得的變量X的系統(tǒng)部分。另外兩部分是可能的期望估計(jì)誤差ΔEΛ(X)和中心化變量X,對(duì)于它們的評(píng)定結(jié)果是標(biāo)準(zhǔn)差估計(jì)值σΛΔEΛ(X)〕和σΛ(X),或中心化極限估計(jì)值UΛΔEΛ(X)〕和UΛ(X);這兩部分在一起組成了變量X在量值評(píng)估中的隨機(jī)部分。
    隨機(jī)變量X的系統(tǒng)部分X=Λ和隨機(jī)部分XΛ可以分別用式(31)和(32)表示:
    X=X=Λ+XΛ  (30)
    X=Λ=EΛ(X)  (31)
    XΛ=X-X=Λ=X-ΔEΛ(X)  (32)
    變量X的分散性可以用變量隨機(jī)部分XΛ的大小來量化,即用變量隨機(jī)部分XΛ的均方根估計(jì)值σ0Λ(XΛ)或極限估計(jì)值U0Λ(XΛ)表征。
    由于X是變量X的中心化變量并和期望估計(jì)誤差ΔEΛ(X)間相互對(duì)立,因此有式(33)和(34):
    σ0Λ(XΛ)={σΛ(X)2+σ0ΛΔEΛ(X)〕2}1/2  (33)
    U0Λ(XΛ)={UΛ(X)2+U0ΛΔEΛ(X)〕2}1/2  (34)
 

三、隨機(jī)變量的不確定度和測量不確定度

    1.任意隨機(jī)變量的“不確定度”
    量值的分散性是所有隨機(jī)變量所共有的特點(diǎn)。如果希望有一個(gè)術(shù)語來表述對(duì)任意隨機(jī)變量量值分散性的評(píng)估結(jié)果,“不確定度”是合適的術(shù)語名稱。建議對(duì)任意隨機(jī)變量術(shù)語“不確定度”采用下列定義:
    【隨機(jī)變量的不確定度uncertainty of random variable
    隨機(jī)變量X的不確定度是表征變量隨機(jī)部分XΛ大小的統(tǒng)計(jì)特征估計(jì)值。
    注:
    (1)變量X隨機(jī)部分的表示式為:XΛ=X-EΛ(X)=X-ΔEΛ(X)。式中的EΛ(X)為變量X的期望估計(jì)值,即期望E(X)的估計(jì)值;X=X-E(X)為變量X的中心化變量;ΔEΛ(X)=EΛ(X)-E(X)為EΛ(X)的期望估計(jì)誤差。期望估計(jì)誤差ΔEΛ(X)具有未知的確定值,有時(shí)被稱為未定系統(tǒng)誤差。由于未定系統(tǒng)誤差的確定值是未知的,因此,對(duì)它的評(píng)估實(shí)際上是對(duì)期望估計(jì)方法可能存在的誤差進(jìn)行評(píng)估。所以任何變量的不確定度將由其中心變化量的不確定度及期望估計(jì)誤差的不確定度兩個(gè)獨(dú)立部分組成。
    (2)變量隨機(jī)部分的均方根估計(jì)值被稱為變量的標(biāo)準(zhǔn)不確定度。
    (3)變量隨機(jī)部分的極限估計(jì)值被稱為變量的擴(kuò)展不確定度。
    (4)表征包括變量系統(tǒng)和隨機(jī)兩部分整個(gè)大小均方根估計(jì)值或極限估計(jì)值可以稱為“全(complete)標(biāo)準(zhǔn)不確定度”或“全(complete)擴(kuò)展不確定度”。它可以由變量的期望估計(jì)值和變量相應(yīng)的不確定度綜合得出。
    (5)對(duì)某種指定目的可以對(duì)變量“擴(kuò)展不確定度”規(guī)定允許值,這可以稱為該目的變量的“允許擴(kuò)展不確定度”。例如,機(jī)械加工的公差,測量設(shè)備的最大基本誤差允許值,各種檢驗(yàn)被檢量的允許偏差等。
    表示符號(hào):
    隨機(jī)變量X的標(biāo)準(zhǔn)不確定度表示為σ0Λ(XΛ)。
    隨機(jī)變量X的擴(kuò)展不確定度表示為U0Λ(XΛ)。
    隨機(jī)變量X的全(complete)標(biāo)準(zhǔn)不確定度表示為σ0Λ(XΛ)。
    隨機(jī)變量X的全(complete)擴(kuò)展不確定度表示為U0Λ(X)。
    來源及評(píng)注:
    用統(tǒng)計(jì)學(xué)術(shù)語表述的GUM95中術(shù)語“測量不確定度”的擴(kuò)展概念?!?br />     這術(shù)語“不確定度”的這一定義是用統(tǒng)計(jì)學(xué)的術(shù)語明確地表述了“不確定度”含義中的量值關(guān)系,使其概念不留任何含糊之處。這術(shù)語定義又將“不確定度”和特定的隨機(jī)變量明確地聯(lián)系在一起。只有明確特定的隨機(jī)變量后,“不確定度”才有完整的涵義。“變量隨機(jī)部分大小”和其“不確定度”之間的關(guān)系是客觀存在的“量值”和其人為的評(píng)估值之間的關(guān)系。這術(shù)語定義的“注”將“不確定度”和目前廣泛應(yīng)用的概念銜接起來,使它們?cè)谑褂弥邢嗷ャ暯雍蛥f(xié)調(diào)。
    2.與“測量不確定度”有關(guān)的術(shù)語
    和“測量”過程直接有關(guān)的隨機(jī)變量有3個(gè):測量結(jié)果Y、測量誤差ΔY和被測量真值Y0,它們之間的關(guān)系如下:
    Y=ΔY+Y0  (35)
    對(duì)式(35)兩側(cè)作期望估計(jì),可得到式  (36):
    EΛ(Y)=EΛ(ΔY)+EΛ(Y0)  (36)
    將式(35)減去式(36),可得到式  (37):
    〔Y-EΛ(Y)〕=〔ΔY-EΛ(ΔY)〕+〔Y0-EΛ(Y0)〕 (37)
    即有式  (38):
    YΛ=ΔYΛ+Y0Λ  (38)
    式(38)中的YΛ=〔Y-EΛ(Y)〕,ΔYΛ=〔ΔY-EΛ(ΔY)〕和Y0Λ=〔Y0-EΛ(Y0)〕分別為測量結(jié)果Y、測量誤差ΔY和被測量真值Y0的隨機(jī)部分。
    測量誤差ΔY的系統(tǒng)部分ΔY=Λ被稱為系統(tǒng)誤差(systematic error),其隨機(jī)部分ΔYΛ被稱為隨機(jī)誤差(random error)。
    測量誤差ΔY和被測量真值Y0的量值的隨機(jī)變化完全由不同的原因所引起,因此變量ΔYΛY0Λ是獨(dú)立的。則有式(39)和(40):
    σ0Λ(YΛ)2=σ0Λ(YΛ)2+σ0Λ(Y0Λ)2  (39)
    U0Λ(YΛ)2=U0Λ(YΛ)2+U0Λ(Y0~Λ)2  (40)
    式(39)中的σ0Λ(YΛ)、σ0Λ(YΛ)和σ0Λ(Y0~)分別為測量結(jié)果Y,測量誤差ΔY和被測量真值Y0的標(biāo)準(zhǔn)不確定度,而式(40)中的U0Λ(YΛ)、U0Λ(YΛ)和U0Λ(Y0~Λ)分別為測量結(jié)果Y、測量誤差ΔY和被測量真值Y0的擴(kuò)展不確定度。
    測量誤差不確定度和被測量真值不確定度是兩個(gè)相互獨(dú)立的不確定度,它們分別是測量精密度評(píng)估和被測量值穩(wěn)定性評(píng)估的對(duì)象。測量結(jié)果不確定度則由測量誤差不確定度和被測量真值不確定度組成。因此,可以用于測量精密度評(píng)估和被測量值穩(wěn)定性評(píng)估之中的任一個(gè)目的。但將測量結(jié)果不確定度用測量精密度評(píng)估時(shí),由式(39)和(40)可以得出式(41)和(42):
    σ0Λ(YΛ)2=σ0Λ(YΛ)2-σ0Λ(Y0~Λ)2  (41)
    U0Λ(YΛ)2=U0Λ(YΛ)2-U0Λ(Y0~Λ)2  (42)
    顯然需要補(bǔ)做被測量真值不確定度σ0Λ(Y0~Λ)或U0Λ(Y0~Λ)的評(píng)定工作。通常在這時(shí)要求被測量真值不確定度對(duì)于測量結(jié)果不確定度是能夠忽略的。
    將測量結(jié)果不確定度用被測量值穩(wěn)定性評(píng)估時(shí),由式(39)和(40)可以得出式(43)和(44)
    σ0Λ(Y0~Λ)2=σ0Λ(YΛ)2-σ0Λ(YΛ)2  (43)
    U0Λ(Y0~Λ)2=U0Λ(YΛ)2-U0Λ(YΛ)2  (44)
    這里需要補(bǔ)做的是測量誤差不確定度σ0ΛL(ΔYΛ)或U0Λ(ΔYΛ)的評(píng)定工作。通常在這時(shí)要求測量誤差不確定度對(duì)于測量結(jié)果不確定度是能夠忽略的。
    測量不確定度僅能是測量結(jié)果不確定度,測量誤差不確定度或被測量真值不確定度中的一個(gè),有必要明確它是哪一個(gè)。
    按JJF1059-1999規(guī)范和GUM95所給測量不確定度定義的外延判斷,所定義的應(yīng)該是測量結(jié)果不確定度。但測量不確定度主要用于測量準(zhǔn)確度評(píng)定,其中的被測量不穩(wěn)定性影響應(yīng)該盡量排除。因此,合理地將“測量不確定度”名稱保留給測量誤差不確定度。JJF1059-1999規(guī)范和GUM95所給定義的測量不確定度采用名稱“測量結(jié)果不確定度”。本文建議將“測量不確定度”理解為測量誤差不確定度。
    這樣,本文建議術(shù)語“測量不確定度”采用下列定義:
    【測量不確定度uncertainty of a measurement
    測量不確定度是表征測量隨機(jī)誤差DY~L大小的統(tǒng)計(jì)特征估計(jì)值。
    注:
    (1)測量隨機(jī)誤差ΔYΛ的表示式為:ΔYΛ=ΔY-EΛ(ΔY)=ΔYΛ-ΔEΛ(ΔY)。式中的ΔY是測量誤差,EΛ(ΔY)為誤差ΔY的期望估計(jì)值,即期望E(ΔY)的估計(jì)值;ΔY~=ΔY-E(ΔY)為誤差ΔY的中心化變量;ΔEΛ(ΔY)=EΛ(ΔY)-E(ΔY)為估計(jì)值EΛ(ΔY)的期望估計(jì)誤差。期望估計(jì)誤差ΔEΛ(ΔY)具有未知的確定值,有時(shí)被稱為未定系統(tǒng)誤差。由于未定系統(tǒng)誤差的確定值是未知的,因此對(duì)它的評(píng)估實(shí)際上是對(duì)期望估計(jì)方法可能存在的誤差進(jìn)行評(píng)估。因而任何變量的不確定度將由其誤差中心化變量的不確定度及期望估計(jì)誤差的不確定度兩個(gè)獨(dú)立部分組成。
    (2)測量隨機(jī)誤差的均方根估計(jì)值被稱為變量的標(biāo)準(zhǔn)測量不確定度;
    (3)測量隨機(jī)誤差的極限估計(jì)值被稱為變量的擴(kuò)展測量不確定度?!?br />     “測量誤差”和“測量不確定度”之間的關(guān)系同樣是“客觀隨機(jī)變量”和表示它分散性大小的“統(tǒng)計(jì)特征估計(jì)值”之間的關(guān)系,它們同樣是相互依存和統(tǒng)一的。
    以上是本文對(duì)術(shù)語“被測量真值”與“測量誤差”、“測量結(jié)果”與“測量不確定度”的理解,根據(jù)這樣的理解,在“準(zhǔn)確度評(píng)定”中將同時(shí)和協(xié)調(diào)地使用這四個(gè)術(shù)語。根據(jù)這樣的理解,“測量結(jié)果”Y的“準(zhǔn)確度評(píng)定”就是對(duì)“測量結(jié)果”Y的“測量誤差”ΔY大小的評(píng)估,得出的評(píng)估結(jié)果將是包括“測量不確定度”在內(nèi)的“測量誤差”ΔY的各種統(tǒng)計(jì)特征估計(jì)值。由此將對(duì)“測量結(jié)果”Y的“準(zhǔn)確度評(píng)定”和它的“測量誤差ΔY評(píng)估”將作相同的理解。而“測量不確定度”評(píng)定就是相應(yīng)“準(zhǔn)確度評(píng)定”的一部分。
    

四、結(jié)束語

    本文用統(tǒng)計(jì)學(xué)術(shù)語重新定義了術(shù)語“測量不確定度”。在重新定義過程中注意和吸收了GUM95的“不確定度方式”學(xué)說的下列合理內(nèi)容。
    1.區(qū)分客觀量值和它的人為估計(jì)值。
    2.用術(shù)語“不確定度”表述變量量值分散性的評(píng)估結(jié)果。
    3.明確部分“不確定度”由“期望估計(jì)誤差(未定系統(tǒng)誤差)”引起。
    但在下列的幾個(gè)方面本文內(nèi)容和GUM95的有關(guān)內(nèi)容存在明顯的差別:
    1.將術(shù)語“不確定度”的概念推廣應(yīng)用到所有的隨機(jī)變量。
    2.建議“測量不確定度”采用“測量誤差不確定度”的定義,而GUM95采用的是“測量結(jié)果不確定度”的定義。
    3.強(qiáng)調(diào)完整的“測量不確定度”概念必須包含明確的“測量誤差”概念。強(qiáng)調(diào)術(shù)語“被測量真值”和“測量誤差”與“測量結(jié)果”和“測量不確定度”是相輔相成和協(xié)調(diào)的概念。而GUM95或UA學(xué)說則有著強(qiáng)烈的排斥“被測量真值”和“測量誤差”的傾向,只提“測量不確定度”所屬“測量結(jié)果”。
    事實(shí)上同一個(gè)“測量結(jié)果”根據(jù)其用途的不同(如它可以充當(dāng)某個(gè)測量誤差的約定真值)和不同定義的“被測量真值”可以構(gòu)成不同定義的“測量誤差”。不同定義的“測量誤差”當(dāng)然對(duì)應(yīng)不同的“測量不確定度”。因此很多情況下GUM95并非在評(píng)定所需要評(píng)定“測量誤差”的不確定度。
    4.在本文討論中認(rèn)為“測量誤差”評(píng)定的大部分過程獨(dú)立于測量過程,因此“測量結(jié)果”和“測量不確定度”的定義不應(yīng)捆綁在一起。而UA學(xué)說正力圖將它們的定義捆綁在一起。
    以上對(duì)GUM95或UA學(xué)說的內(nèi)容的更動(dòng)目的是為了使“測量不確定度”的含義更符合客觀情況,以利于其廣泛地推廣應(yīng)用。

分享到:
通知 點(diǎn)擊查看 點(diǎn)擊查看
公告 征訂通知 征訂通知
會(huì)員注冊(cè)
已有賬號(hào),
會(huì)員登陸
完善信息
找回密碼